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Abstract. The presence of shell structure and the accompanying high level degeneracy leads to a strength-
ening of the pairing interaction in some metallic nanoclusters. It is predicted that for specific systems one
can expect a large increase in the values of the critical temperature and other parameters.

PACS. 74.78.Na Mesoscopic and nanoscale systems – 36.40.Cg Electronic and magnetic properties of
clusters – 74.70.-b Superconducting materials

This paper contains a theoretical analysis of the su-
perconducting state of metallic nanoclusters. We show
that under special, but perfectly realistic, conditions such
clusters should display a drastic increase in the val-
ues of superconducting parameters such as the critical
temperature and the energy gap. The superconducting
state of nanoparticles is a subject of many interesting ex-
perimental and theoretical studies (see, e.g., [1–10] and
the review [11]). If metallic clusters contain a small num-
ber of electrons (N ≈ 102 − 103), one might think that
they do not display superconducting properties, because
the average level spacing (EF /N ∼ 102−103 meV) greatly
exceeds the pairing energy gap. However, the situation is
more complicated. The fact of the matter is that there ex-
ist clusters in which the pattern of electronic states is very
different from that of a simple equally spaced level distri-
bution. They contain highly degenerate electronic levels,
or groups of very close levels (quasi-degenerate case). The
importance of the so-called shell structure for the super-
conducting state was indicated in [5,10] and, especially
in [6]. Below, we focus precisely on such a situation.

As is known, metallic clusters contain delocalized elec-
trons whose states organize into shells, similar to those
in atoms or nuclei [12]. In some clusters, shells are com-
pletely filled all the way up to the highest occupied shell
(HOS): e.g., those with N = Nm = 20, 40, 58, 92, 138,
168,.... These are known as “magic” numbers, see, e.g.,
the reviews [13,14] (N denotes the number of delocal-
ized electrons and Nm specific “magic” numbers). Such
clusters are spherical. The electronic states in such magic-
number clusters are labeled by their orbital momentum l
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and radial quantum number n, and if l is large, the shell
is highly degenerate. In addition, the energy spacing ∆E
between neighboring shells varies, and some of them are
separated by only a small ∆E. One can show (see below)
that the combination of high degeneracy and a small en-
ergy spacing between the HOS and the lowest unoccupied
shell (LUS) leads to the possibility of a large strengthening
of superconducting pairing in the corresponding clusters.

Let us write down the main equations for the pairing
order parameter. We employ the thermodynamic Green’s
function formalism allowing one to evaluate the order
parameter ∆(ωn) and the critical temperature Tc (here
ωn = (2n+1)πT , see, e.g., [15]). Since we expect some clus-
ters to display a high Tc, so that the ratio 2πTc/Ω̃ (where
Ω̃ is the characteristic phonon frequency) will not be very
small, we do not restrict ourselves to the usual BCS weak
coupling approximation (corresponding to 2πTc � Ω̃) and
consider instead the more general equation (cf. [16–18]).
For systems with a discrete energy spectrum this equation
reads

∆(ωn)Z =
ηT

V

∑

j

∑

ωn′

gjD(ωn − ωn′)∆(ωn′)

× [
ω2

n′ + ∆2(ωn′) + ξ2
j

]−1
. (1)

Here D = Ω̃2[(ωn − ωn′)2 + Ω̃2]−1 is the phonon Green’s
function, ∆(ωn)[ω2

n + ∆2(ωn)+ ξ2
i ]−1 is the Gor’kov func-

tion, V is the cluster volume, Ω̃ is the characteristic
phonon frequency, gj = 2(2l + 1) is the degeneracy and
ξj = εj −µ is the electron energy referred to the chemical
potential. Z is the renormalization function; here we shall
not write out its explicit expression (see, e.g., [17,18]).
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As is known, the presence of Z removes the divergence at
ωn = ωn′ . The parameter η describes the electron-phonon
coupling and has the following form: η = 〈I2〉/(MΩ̃2);
here M is the ionic mass, I is the electron-ion interaction,
and 〈I2〉 is the matrix element averaged over the states
involved in the pairing [19,20]. Note that the value of η is
close to its bulk value ηb. Indeed, the surface of the cluster
can be treated as a scatterer (cf. [21]) and therefore the
pairing is analogous to that in the case of a “dirty” super-
conductor analyzed in [3], see also [22], whereby the mean
free path is much shorter than the coherence length. Then
the average value of I2 is not affected by the scattering
and, indeed, η ≈ ηb where ηb is the Hopfield parameter
(see, e.g., [20]). Note also that the characteristic vibra-
tional frequency Ω̃ is close to the bulk value because the
pairing is mediated mainly by the short-wavelength part of
the vibrational spectrum. Strictly speaking, the order pa-
rameter depends on j. However, for shells close to the HOS
(when kHR � 1, i.e., when N > 102) this dependence is
rather weak (see, e.g., [10,23]) and can be neglected. Here
R is the cluster radius and kH is the electron wave vec-
tor at HOS (kH ≈ 2/rs, where rs is the electron density
parameter). The value of kH for the clusters of interest is
close to the Thomas-Fermi screening wave vector and to
the value of the Fermi momentum kF (we put � = 1). The
Fermi energy EF is likewise close to EH , the energy of the
HOS. As the cluster size increases, a continuum energy
spectrum develops, and we obtain the equation [24].

In order to calculate the value of Tc, one puts ∆ = 0 in
the denominator on the right-hand side of equation (1),
then ωn = (2n + 1)πTc. Incorporating the explicit ex-
pression for Z, we obtain after some manipulations the
following matrix equation (cf. [17,18]):

∆(ωn) =
∑

n′
Knn′∆(ωn′); n, n′ ≥ 0 (2)

where

Knn′ =
(
λT Ω̃2/2νbV

) (
f+

nn′ + f−
nn′ − 4δnn′ω2

nf+
nn′f

−
nn′

)

×
∑

j

gj

[
ω2

n′ + (Ej − µ)2
]−1

. (3)

Here f
+(−)

nn’ = [(ωn ± ωn’)
2 + Ω̃2]−1. We introduce the

dimensionless parameter λ = ηνb, where νb = mkF /2π2.
Since η ≈ ηb and Eh ≈ EF , the parameter λ ≈ λb, the bulk
coupling constant (see, e.g., [25]) which corresponds to the
bulk critical temperature T b

c ; the values for λ are known
for many superconductors (see, e.g., [26]). Therefore, equa-
tions (2, 3) allow us to evaluate Tc by using known param-
eters. We can therefore focus directly on the impact of size
quantization, especially the degeneracy caused by the shell
structure.

For some spherical clusters (see below) the degener-
acy gj is quite large. This is a very important factor for our
analysis, since it plays the role of an effective increase in
the value of λ. It is also essential that the HOS-LUS inter-
val (analogous to the “HOMO-LUMO” spacing in molec-
ular spectroscopy) is not large. Then the term ξj = εj −µ

in the denominator is relatively small (see below), which
is also an important factor.

Since the number of electrons N is fixed, we also
have an equation determining the position of the chem-
ical potential:

N =
∑

j

gj {1 + exp [(Ej − µ)/T ]}−1
. (4)

For a closed-shell cluster the chemical potential lies in the
middle of the HOS-LUS interval. At finite temperatures
µ ≡ µ(T) shifts in accordance with equation (4). It is
convenient to write the expression for µ in the form

µ = EH + µ̃EH [(EL/EH) − 1] . (5)

Here EH(L) ≡ EHOS(LOS). Within the potential box
model the ratio EL/EH is EL/EH = (ZL/ZH)2, where
ZL and ZH are the roots of the Bessel function Jl+1/2(x)
corresponding to the neighboring terms EL and EH .

Based on equations (2–4), we can calculate Tc. Let us
apply these general equations to a specific case, e.g., the
example of a cluster with N = 168. The reason for such
a choice will be seen below. Note, first of all, that this
is a closed-shell cluster (see, e.g., [27]). The cluster with
N = 168 contains fully occupied shells up to the HOS with
l = 7. As a result, the degeneracy gj = 2(2l + 1) is very
high: gH = 30(!). Moreover, the next shell is relatively
close, so that (EL/EH) − 1 ≈ 5 × 10−3. Note that the
LUS also has a large degeneracy: gL = 18.

The critical temperature can be calculated from
equation (2), or more specifically, from the equation:

Det|1 − Knn′ | = 0, (6)

where the matrix Knn′ is defined by equation (3).
To be even more specific, let us first look at In56. In-

deed, indium is a bulk superconductor with Tc = 3.4 K
and so it is interesting to consider the impact of size quan-
tization on its properties. It has been observed experimen-
tally (see, e.g., [28]) that In clusters display shell structure.
Since In, like Al, has three weakly bound electrons, the
In56 cluster indeed contains 168 electrons.

Let us evaluate the value of Tc for the In clusters with
N = 168. The following parameter values are used for
In: λ ≈ 0.55, Ω̃ ≈ 8 meV [26], kF ≈ 1.5 × 108 cm−1,
R ≈ 7 × 10−8 cm (see the discussions following Eqs. (1)
and (3)). The value of λ is modified to account for the
Coulomb pseudopotential (see, e.g., [18]).

With the use of the In56 parameters, one can solve the
eigenvalue problem for equation (2), that is, solve equa-
tion (6). As indicated above, the quantities ξj = εj − µ
are not large for j = H, L (H and L correspond to HOS
and LUS, respectively); these two terms make the major
contribution to the sum in equation (6). For accuracy, we
also have included the terms next to H and L. All other
terms could be neglected. It turns out that the solution
rapidly converges (cf. [17,18]), and it is sufficient to solve
equation (6) as a 2 × 2 matrix.

The calculation yields Tc ≈ 21.5 K(!). This greatly
exceeds the aforementioned bulk value T b

c = 3.4 K. Such
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a large increase in Tc is caused by the high degeneracy of
HOS and LUS and by the small magnitude of EH(L) − µ.
Note that the solution is self-consistent, and the use of the
matrix equation (6) with fast convergence is justified.

It is essential that the value of Tc of a nanocluster is
not universal but depends strongly on its parameters. A
remarkably high value of Tc is predicted for Nb168 clusters.
The following parameters are employed: λ ≈ 1.05, EF ≈
5.3 eV, Ω̃ ≈ 1.5 × 10−2 eV, R ≈ 9 Å, EH ≈ 6.45 eV.
With the use of equations (3–6) we obtain Tc ≈ 102 K (!).
This value greatly exceeds that for bulk Nb, T b

c = 9.2 K.
A similarly high value can be obtained for Zn clusters.

Let us discuss the case of clusters with incomplete
shells. These are different from the “magic” clusters in
two important aspects. Clusters with partially unoccu-
pied shells undergo a Jahn-Teller shape distortion (see,
e.g., [14]). This splits the degenerate level, which is not
favorable for pairing. On the other hand, removal of elec-
trons from the HOS strongly affects the position of the
chemical potential. For example, at T = 0 K it now coin-
cides with the highest occupied level. This factor can en-
hance Tc. The best scenario would correspond to nanoclus-
ters with slightly incomplete shells (e.g., with N = 166)
and with an appropriate vibrational force matrix (elastic
constants), such that the shape deviations from sphericity
would be relatively weak. Note once again that the effect
is not universal and strongly depends on the parameters
of the material. It turns out (the detailed analysis will be
described elsewhere) that such situation occurs for Zn
clusters with N = 166. For such clusters the value of Tc is
on the order of Tc ≈ 120 K (!).

According to a very interesting paper [6], a spherical
cluster with a half-filled shell should have a high value of
Tc. However, in this situation the shape deformation would
be very large, drastically decreasing the value of Tc. The
author [6] suggested that it might be possible to use a clus-
ter network combined with charge transfer to overcome
this problem. We think that the situation with almost
filled-shell is promising, because the deformation could be
rather small.

The role of fluctuations grows with decreasing particle
size (see, e.g., [29]). However, for the clusters studied here
the Ginzburg parameter (∆/EF )2 is still relatively small,
although the impact of fluctuation should be taken into
account e.g., in the study of a.c. properties.

Pair correlation can manifest itself via an increased
magnitude of the HOS-LUS interval (revealing the pres-
ence of the energy gap); it is important to note that the
magnitude of this interval strongly depends on the temper-
ature. The pairing should manifest itself also in odd-even
effects for cluster spectra and in their magnetic properties.
The phenomenon is also promising for the creation of high
Tc tunneling networks. These aspects will be discussed in
detail elsewhere.

In summary, small metallic nanoclusters which pos-
sess a large degeneracy 2(2l + 1) of the highest occupied
shell and a small HOS-LUS interval are predicted to dis-
play a giant strengthening of the superconducting pair
correlation. A similar effect also occurs for the clusters

with slightly incomplete shells and, correspondingly, small
shape deformation.
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